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Abstract: The traditional vulnerability parameter connectivity is the minimum number of nodes needed to be
removed to disconnect a network. Likewise, edge connectivity is the minimum number of edges needed to be
removed to disconnect. A disconnected network may still be viable if it contains a sufficiently large component.
Component order connectivity and component order edge connectivity are the minimum number of nodes, re-
spectively edges needed to be removed so that all components of the resulting network have order less than some
preassigned threshold value. In this paper we survey some results of the component order connectivity models.

Key–Words: Connectivity, edge connectivity, component order connectivity, component order edge connectivity,
component order neighbor connectivity

1 Introduction

This paper is a chronicle of the ongoing study by the
Stevens/Seton Hall Graph Theory Group of a vulner-
ability model of a graph-theoretic network. Specifi-
cally, a network is modeled by a (simple) graph with
either its nodes or its edges subject to either random or
purposeful failure. We consider the nodes and edges
to be the elements of the associated system and the op-
erating elements remaining after the failure of some of
the elements at a snapshot in time is referred to as a
state of the system. Of course an edge being operable
presupposes that both end nodes are also operable. In
the traditional models of connectivity, a failure state

occurs when the surviving subgraph is either discon-
nected or trivial. Thus, a failure state may contain a
large component, a subset of a failure state may be an
operating state, and relatively small operating states
are tolerated. In many cases the surviving network
may still be able to perform the function of the net-
work provided there is a sufficiently large component
remaining, regardless of whether or not the graph is
connected. An example of such a network is a dis-
tributed computer system, which may still function at
a reasonable level as long as there are a sufficient num-
ber of computers still interconnected.

In our model a threshold value k ∈ Z+ is deter-
mined beforehand and a state is an operating state
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provided that the induced subgraph defined by the op-
erating elements has at least one component of order
at least k. Otherwise, if the operating elements induce
a subgraph with all components of order at most k−1,
the state is called a failure state and the associated set
of failed elements is called a failure set.

For the most part we limit the study to scenarios
where either nodes may fail but edges do not or edges
may fail but nodes do not. Of course if a node fails
the edges incident at it become inoperable and must
be removed from the graph. We also introduce one
other scenario currently being studied. In this case
nodes fail, edges do not but nodes adjacent to failed
nodes are subverted and are therefore considered in-
operable. Thus the state of the associated system con-
sists of the subgraph induced by those nodes that have
neither failed nor have been subverted.

In the next section we formally introduce the
models and essential parameters along with some el-
ementary facts. In the third section we study the rela-
tionship between our new node vulnerability parame-
ter and κ the usual (node) connectivity parameter. In
the fourth section we investigate the relationship be-
tween our new edge vulnerability parameter and other
graph parameters. In the fifth section we introduce
some algorithms to compute the parameters for trees
and cycles. In our sixth and final section we introduce
the model where nodes adjacent to failed nodes are
subverted and present some preliminary results.

2 Preliminaries
Consider a network modeled by a (simple) graph G =
(V, E) having n = |V | nodes and e = |E| edges. We
consider two scenarios, either the nodes are subject to
failure and the edges do not fail or the edges are sub-
ject to failure and the nodes do not. Note if a node
fails, all edges incident at the node become inopera-
ble. In the case that nodes fail we define an associated
system on the set of nodes V. A state of the system is
the collection of operating nodes at a given instance of
time. For convenience, we will also refer to the sub-
graph of G spanned by the operating nodes as a state
of the system. Observe that if W is the set of nodes that
have failed, then this subgraph is precisely G−W . In
the traditional node failure scenario, a state is an op-
erating state provided the subgraph is connected and
has at least 2 nodes; otherwise it is a failure state. The
set of nodes W whose failure created the failure state
is called a failure set and the (node) connectivity pa-
rameter κ is defined as the minimum cardinality of a

failure set. Similarly, in the case that edges fail, we
define an associated system on the set of edges E. A
state of the system is the collection of operating edges
at a given instance of time. For convenience, we will
also refer to the subgraph of G spanned by the operat-
ing edges as a state of the system. Observe that if F
is the set of edges that have failed, then this subgraph
is precisely G−F . In the traditional edge failure sce-
nario, a state is an operating-state provided the sub-
graph is connected; otherwise it is a failure state. The
set of edges W whose failure created the failure state
is called an edge failure set and the edge connectivity
parameter λ is defined as the minimum cardinality of
an edge failure set.

In our study a state is an operating-state provided
the subgraph that remains after the failure of some
nodes or some edges contains a component of order
at least k, where 2 ≤ k ≤ n is a pre-assigned thresh-
old value. Otherwise a failure state occurs, i.e. all
components of the surviving subgraph have order at
most k−1. We now more formally define these terms
and the associated parameters.

Definition 1 Let G = (V, E) be a graph having n =
|V | nodes and e = |E| edges. Assume 2 ≤ k ≤ n.

a) If nodes fail but edges do not, a state is the
set of operating nodes at a snapshot in time. A state
is an operating-state if the operating nodes induce a
subgraph with at least one component of order at least
k. Otherwise, it is a failure state, i.e. all components
of the induced subgraph have order at most k−1 and,
the associated set of failed nodes is called a failure
set. The k-component order connectivity, κ(k)c (G)

or simply κ(k)c , is the minimum cardinality of a failure
set.

b) If edges fail but nodes do not, a state is the set
of operating edges at a snapshot in time. A state is an
edge operating state if the operating edges induce a
subgraph with at least one component of order at least
k. Otherwise, it is an edge failure state, i.e. all com-
ponents of the induced subgraph have order at most
k − 1 and the associated set of failed edges is called
an edge failure set. The k-component order edge
connectivity, λ(k)c (G) or simply λ(k)c , is the minimum
cardinality of an edge failure set.

Note that for convenience, we will also refer to
the subgraph induced by the operating nodes or edges
as a state. If W is the set of nodes which have failed
then the state is precisely the subgraph G −W . If F
is the set of edges that have failed, then the state is the
subgraph G− F .
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We give some examples for these new parameters.
Note that we compute κ(k)c by either finding a failure
set of minimum cardinality or finding a failure state of
maximum order, and we can compute λ(k)c by either
finding an edge failure set of minimum cardinality or
an edge failure state of maximum size.

Example 2 Assume 2 ≤ k ≤ n .
a) Let G = Pn, the path on n nodes. Starting

from an end node, label the nodes from 1 to n. It is
easily seen that the set of all nodes whose label is di-
visible by k forms a minimum cardinality failure set,
thus κ(k)c (Pn) =

⌊
n
k

⌋
. If we instead label the edges

from 1 to n−1, then the set of all edges whose label is
divisible by k − 1 forms a minimum cardinality edge
failure set, thus λ(k)c (Pn) =

⌊
n−1
k−1

⌋
.

b) Let G = Cn , the cycle on n nodes. To find
a minimum failure set, let u be an arbitrary node and
label the nodes sequentially on the cycle from 0 to n−
1, with u the node labeled 0. Then u along with the
nodes found by applying the process in a) to Cn−u =
Pn−1 , already labeled forms a minimum cardinality
failure set. Thus κ(k)c (Cn) =

⌈
n
k

⌉
. An analogous

procedure shows λ(k)c (Cn) =
⌈

n
k−1

⌉
.

c) Let G = K1,n−1 , the complete bipartite graph
with one part of order 1. Removal of the center node
isolates all the other nodes, thus κ(k)c (K1,n−1) = 1.
Removal of n − k + 1 edges leaves one non-trivial
component of order k − 1, thus an edge failure state.
Thus λ(k)c (K1,n−1) = n− k + 1 .

d) Let G = Kn, the complete graph on n nodes.
Since the deletion of any set of nodes does not discon-
nect, a failure state occurs only when k − 1 or fewer
nodes operate. Thus κ(k)c (Kn) = n − k + 1 . All
components of a maximum size edge failure state of
Kn will be complete. An algebraic computation shows
that the maximum size edge failure state occurs when
the number of components of order k−1 is maximized.
Thus

λ(k)c (Kn) =

(
n

2

)
−
⌊

n

k − 1

⌋(
k − 1

2

)
−
(
r

2

)
,

where n =
⌊

n
k−1

⌋
(k − 1) + r, 0 ≤ r ≤ k − 2.

e) Let G = Kp,q, the complete bipartite graph
on p + q = n nodes with p ≤ q. The computation
of κ(k)c (Kp,q) is relatively easy and depends on the
size of k. When k ≤ q, then κ(k)c (Kp,q) = p, since

removing the part of order p leaves a subgraph con-
sisting of q isolates and thus a failure state while re-
moving fewer than p nodes does not disconnect and
leaves a component of order greater than q and there-
fore greater than k. When q < k it is not necessary
to disconnect to obtain a failure state, i.e. a failure
state also occurs when k − 1 or fewer nodes operate.
Therefore if q < k, then

κ(k)c (Kp,q) = p+ q − k + 1 = n− k + 1.

On the other hand, the computation of λ(k)c (Kp,q) is
surprisingly difficult. All non-trivial components of
a maximum size edge failure state of Kp,q will be

complete-bipartite. In the case that p ≤
⌊
p+q
k−1

⌋
, a

maximum size edge failure state consists of p copies
ofK1,k−2 and q−p(k−2) isolated nodes. Thus when

p ≤
⌊
p+q
k−1

⌋
, λ(k)c (Kp,q) = p(q − k + 2)[1]. When

p >
⌊
p+q
k−1

⌋
, the analysis of the composition of a max-

imum size edge failure state is more involved and we
refer the readers interested in this result to [1].

Remark 3 Based on the examples just discussed, one
could surmise that, for example, a maximum order
failure state can always be constructed by judiciously
breaking off components of order k − 1. But consider
the graph in Figure 1 with k = 5. The deletion of
nodes u and v leaves a component of order 4, thus a
failure state, while the deletion of node w leaves two
components, one of order 3 the other order 2, thus a
failure state. So a maximum order failure state exists
with no component of order k − 1. We note also that
in the example the bridge is the unique minimum edge
failure set and its deletion leaves no component of or-
der k − 1.

In general, the computation of κ(k)c and λ(k)c for an ar-
bitrary graph G is not an easy problem. In Section 5
we give algorithms that compute these parameters for
trees and unicycles. We do not have a general proce-
dure that applies to any graph G.

We now give some results pertaining to these new
parameters. The first gives values of κ(k)c and λ

(k)
c
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for some specific values of k. We denote by β(G)
and β1(G) the independence number, i.e. the max-
imum number of non-adjacent nodes, and the edge
independence number, i.e. the maximum number of
non-adjacent edges, respectively.

Proposition 4 [2]: Let G be a graph on n nodes and
e edges.

1. κ(2)c (G) = n− β(G) and κ(n)c (G) = 1 .

2. λ(2)c (G) = e , λ(3)c (G) = e − β1(G), and
λ
(n)
c (G) = λ(G).

Our next easily established result shows that κ(k)c
and λ(k)c satisfy the subgraph property.

Proposition 5 Let H be a subgraph of G on n nodes,
then for any 2 ≤ k ≤ n, κ(k)c (H) ≤ κ

(k)
c (G) and

λ
(k)
c (H) ≤ λ(k)c (G)

The next result, also easily established, shows the
relationship of the parameters for different threshold
values.

Proposition 6 Let 2 ≤ k ≤ l ≤ n, then
κ
(l)
c (G) ≤ κ(k)c (G) and λ(l)c (G) ≤ λ(k)c (G).

Remark 7 The last proposition provides another dif-
ficulty with finding a general procedure to compute the
parameters. Consider once again the graph in Figure
1. It is easy to see by inspection that λ(3)c = 4 with the
only minimum edge failure set F3 = {ab, ac, wu,wv}
while λ(4)c = 1 with the only minimum edge failure set
F4 = {aw}. Thus λ(4)c = |F4| ≤ |F3| = λ

(3)
c , which

satisfies the proposition but F4 6⊂ F3 ; in fact in this
example F4 ∩ F3 = ∅ .

We conclude this section with some results in-
volving trees. In Example 2 a) and c) we computed the
values of κ(k)c and λ(k)c for the trees Pn and K1,n−1.
These are the extremal trees for these parameters.

Proposition 8 [3]: Let Tn be a tree on n nodes, then
for any value k, 2 ≤ k ≤ n

1.
1 = κ(k)c (K1,n−1) ≤ κ(k)c (Tn) ≤

κ(k)c (Pn) =
⌊n
k

⌋
.

Moreover if α is any value 1 ≤ α ≤
⌊
n
k

⌋
, then

there exists a tree T on n nodes with κ(k)c (T ) =
α.

2. ⌊
n− 1

k − 1

⌋
= λ(k)c (Pn) ≤ λ(k)c (Tn) ≤

λ(k)c (K1,n−1) = n− k + 1.

Moreover if α is any value
⌊
n−1
k−1

⌋
≤ α

≤ n−k+1, then there exists a tree T on n nodes
with λ(k)c (T ) = α.

Remark 9 Thus, for any value of k, the worst tree for
κ
(k)
c is the best tree for λ(k)c , while the best tree for
κ
(k)
c is the worst tree for λ(k)c . Therefore, for the class

of graphs with n nodes and n − 1 edges there is no
value of k for which it is possible to simultaneously
maximize both κ(k)c and λ(k)c .

3 κ versus κ(k)
c

Although the parameter κ is not a pragmatic measure
of system failure, it does have a pragmatic routing in-
terpretation. Indeed, the Menger-Whitney Theorem
[4] states that κ equals the maximum number of inter-
nally disjoint paths joining any pair of non-adjacent
nodes of a network. Hence a study of the interrelation-
ships between κ and κ(k)c is called for. Issues regard-
ing how far apart these parameters can be from each
other as well as the determination of pairs (n, e) such
that κ and κ(k)c may be simultaneously maximized are
significant network analysis and design concerns. We
begin this discussion with a result that compares rel-
ative sizes of κ and κ(k)c followed by a “realizability”
result describing necessary and sufficient conditions
on a 4-tuple (n, k, a, b) or 5-tuple (n, e, k, a, b) for
which a graph on n nodes and e edges exists having
κ = a and κ(k)c = b .

Theorem 10 [5]: If G is a graph on n nodes and 2 ≤
k ≤ n, then

1. κ(G) ≥ n− k + 1 implies that

κ(k)c (G) = n− k + 1 and

2. κ(G) ≤ n− k implies that

κ(G) ≤ κ(k)c (G) ≤ n− k.

Remark 11 It is easy to see that κ(k)c (G) ≤ n− k +
1 since the removal of any set of n − k + 1 nodes
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leaves only k− 1 survivors. Hence, the first condition
guarantees thatG attains the maximum possible value
of κ(k)c while the second indicates that if κ is too small
n−k+1 is unattainable, rather n−k is the maximum
possible.

In our next result we establish necessary and suf-
ficient conditions which specify precisely the combi-
nations of κ and κ(k)c that are realizable.

Theorem 12 [6]:

1. The 5-tuple (n, e, k, a, b), where 2 ≤ k ≤ n and
a ≥ n − k + 1, is realizable by a graph on n
nodes and e edges having κ = a and κ(k)c = b if
and only if either

(a) n = k , a = b = 1 and k − 1 ≤ e ≤
(n−1)(n−2)

2 + 1, or

(b) 2 ≤ k ≤ n− 1, a ≥ 2, b = n− k + 1, and⌈
na
2

⌉
≤ e ≤ (n−1)(n−2)

2 + a

2. The 4-tuple (n, k, a, b) is realizable by a graph
on n nodes, where 2 ≤ k ≤ n and a ≤ n − k,
provided 0 ≤ a ≤ b ≤ n− k.

Remark 13 The result given in Theorem 12(1) fol-
lows immediately from Theorem 10(1) and the well-
known result of Harary [7] that a graph G exists with
κ = a if and only if the bounds given on e are satis-
fied. As for Theorem 12(2) we indicate a construction
which proves realizability. A modification of this con-
struction yields ranges of e values which we do not
indicate here but are given in [6].

Construction 14 Consider

G =
(
Kk−1+b−a ∪Kn−k+1−b

)
+Ka;

it has κ = a and κ(k)c = b where 0 ≤ a ≤ b ≤ n− k.

In the following discussion we consider the pos-
sibility of simultaneously maximizing κ and κ(k)c . We
begin with two simple results that follow from a result
of Harary [7] and Theorem 10. Specifically, Harary
showed that, given n and e such that

⌊
2e
n

⌋
≥ 2, there

exists a graph on n nodes and e edges, namely a power
of the cycle Cn with additional edges if necessary,
having κ = λ = δ =

⌊
2e
n

⌋
. As δ ≤

⌊
2e
n

⌋
such a

graph has maximum value of κ over all graphs with n
nodes and e edges and is referred to as max-κ.

Theorem 15 1. If
⌊
2e
n

⌋
≥ n − k + 1 then every

max-κ graph is max-κ(k)c , i.e. κ(k)c = n− k + 1.

2. If
⌊
2e
n

⌋
= n − k ≥ 2 then every max-κ graph is

max-κ(k)c , i.e. κ(k)c = n− k.

The next theorem concerns a forbidden subgraph
condition on G, the complement of G, that guarantees
max-κ and max-κ(k)c for k ≥ 3 and minimum diam-
eter. This result requires two preliminary results that
are interesting in and of themselves. Although we do
not indicate the proof of the main result, we present
the two requisite results anyway.

Proposition 16 [8]: Suppose n ≥ 4 andG is a graph
on n nodes. Then

1. κ(G) = δ(G) if and only if Km,n−δ+1−m 6⊂ G
for every 2 ≤ m ≤ n− δ + 1−m , and

2. for k ≥ 3, κ(k)c (G) ≥ n − k if and only if
Kq,k+1−q 6⊂ G for every 2 ≤ q ≤ k + 1− q.

As indicated above, the next general result guar-
antees a strong network design for relatively dense sit-
uations.

Theorem 17 [8]: Suppose δ(G) =
⌊
2e
n

⌋
≥
⌊
n
2

⌋
and

K2,2 = C4 6⊂ G. Then

1. G is max-κ,

2. G is max-κ(k)c for every k ≥ 3, i.e. κ(k)c = n− k
if
⌊
2e
n

⌋
≤ n − k or κ(k)c = n − k + 1 if

⌊
2e
n

⌋
≥

n− k + 1, and

3. d(G) ≤ 2, where d(G) is the diameter of G.

We have obtained constructions for k ≤ n− 4 [9]
but only describe the one for k = n− 4.

Construction 18 Observe that the three graphs H10

(the Peterson graph), H12 and H14 shown in Figure
2(a) are cubic and C4-free. Then beginning with these
graphs, inserted for H in the graph of Figure 2(b)
and continuing recursively, one obtains cubic, C4-free
graphs for all even orders n ≥ 10. Next we remove at
most n2 − 1 edges from each of them so that the max-
imum degree is exactly three. By taking complements
of the resulting graphs we obtain G’s with n nodes and
e edges such that δ(G) =

⌊
2e
n

⌋
= n− 4 and C4 6⊂ G.
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We have obtained a partial generalization of The-
orem 17.

Theorem 19 [9]: Suppose that δ(G) =
⌊
2e
n

⌋
= m−

l, where l ≥ 3, G is almost regular (i.e. degrees differ
by at most one) and m ≥ l is the smallest value such
that Kq,m+1−q 6⊂ G for every 2 ≤ q ≤ m + 1 − q.
Then

1. G is max-κ,

2. for k > m, G is max-κ(k)c with κ(k)c = n− k+ 1,

3. for l ≤ k ≤ m, G is max-κ with κ(k)c = n − k,
and

4. if l > 3 and 3 ≤ k ≤ l, then κ(k)c ≥ n− l.

The final discussion in this section concerns κ(2)c
versus κ. As κ(2)c (G) = n− β(G), where β(G) is the
independence number of G, and calculations of β(G)
is an NP-hard problem, it is not surprising that this
discussion turns out to be relatively involved. How-
ever, first we present an easily established result.

Theorem 20 [8]: If δ(G) =
⌊
2e
n

⌋
= n− 1 or n− 2,

then G is max-κ , max-κ(2)c and d(G) ≤ 2.

We next present a result that gives max-κ(2)c de-
pendent on the value of e; but first some preliminaries
must be stated, the first of which requires no proof.

Proposition 21 For n ≥ m ≥ 2, κ(2)c (G) = n−m if
and only if G is Km+1-free but G contains a Km.

Our next requisite fact is the famous theorem of
Turan [10].

Proposition 22 If H is Km+1-free, then e(H) ≤
tn(m), where tn(m) is the number of edges in the al-
most complete multipartite graph K(m,n) on n nodes
with m parts. Furthermore, K(m,n) is the unique ex-
tremal graph.

Now the theorem:

Theorem 23 [10]: Given n, e and e =
(
n
2

)
− e the

maximum κ
(k)
c value is n−m if and only if

tn(m− 1) < e ≤ tn(m).

This result follows readily by removing the ap-
propriate number of edges from K(m,n) and apply-
ing the two previous propositions.

Ballista and Bollabas [11] proved the following
generalization of a theorem of Erdos [12] which we
shall use to obtain a range of values for which κ and
κ
(2)
c cannot be simultaneously maximized.

Proposition 24 If H has n nodes and

tn(m)−
⌊ n
m

⌋
+ 2 ≤ e(H) ≤ tn(m),

then H is Km+1-free if and only if H is m-partite.
Furthermore, the lower bound is tight.

The following theorem yields a range of e values
for which no max-κ , max-κ(k)c graph exists.
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Theorem 25 [14]: If G has n nodes and e edges and

e =

(
n
2

)
− e, then tn(m)−

⌊
n
m

⌋
+ 2 ≤ e ≤ tn(m)

implies that G cannot be both max-κ and max-κ(2)c .

This result follows from the observation that G being
max-κ(2)c forces ∪mi=1Kni ⊂ G where

∑m
i=1 ni = n,

subsequently followed by a nontrivial argument that
κ(G) <

⌊
2e
n

⌋
[14].

We complete this discussion with a positive re-
sult. It is a partial answer to the question as to
whether simultaneous maximization is possible when
e ≤ tn(m)−

⌊
n
m

⌋
+ 1.

Theorem 26 [14]: If n = mr, m is even and m ≥ 4 or
m = 3, r = n

m ≥ 2 and tn(m− 1) ≤ e ≤ tn(m)− n
2 ,

then there exists a graph G with n nodes and e edges
which is max-κ and max-κ(2)c .

Indeed, a graph obtained by judiciously adding a
matching to m disjoint copies of Kr handles the case
of e = tn(m)− n

2 . The construction for the remaining
values of e can be found in [14].

Remark 27 Unfortunately we cannot shed light on
the missing range tn(m)−n

2 ≤ ē ≤ tn(m)−
⌊
n
m

⌋
+1.

4 The Relationship of λ
(k)
c with the

Other Parameters
We first note that the relationship between λ(k)c and
λ is straightforward; in fact since a λ(k)c -failure state
must be disconnected, it follows that λ(k)c ≤ λ for all
k, 2 ≤ k ≤ n. The following result, which follows
immediately from proposition 4(2) and Proposition 6,
extends this inequality.

Proposition 28 For any connected graph G on n
nodes and e edges,

λ(G) = λnc (G) ≤ λ(n−1)c (G) ≤ · · · ≤ λ(2)c (G) = e.

It is well known that for any graph G, κ ≤ λ ≤ δ.
An analogous inequality to the first holds when we
consider component order connectivity and compo-
nent order edge connectivity.

Theorem 29 [3]: For any connected graph G on n
nodes and e edges and for any k, 2 ≤ k ≤ n,
κ
(k)
c (G) ≤ λ(k)c (G) .

When we apply this to trees along with Proposi-
tion 2.48 we come up with the surprising result: if
T1 and T2 are two trees on n nodes, then κ(k)c (T1) ≤
λ
(k)
c (T2), for all k, 2 ≤ k ≤ n.

Given a graph G on n nodes and e edges λ(G) ≤
δ(G) ≤ e, and therefore λ

(n)
c (G) ≤ δ(G) ≤

λ
(2)
c (G). Taking into consideration the string of in-

equalities from Proposition 28, it is natural to ask
where δ(G) appears, i.e. is there a value of k such
that λ(k+1)

c (G) < δ(G) ≤ λ
(k)
c (G) . We answer this

question when δ(G) is sufficiently large by generaliz-
ing a result of Chartrand.

In 1966 Chartrand proved the following:

Theorem 30 [15]: Let G be a connected graph of
order n. If δ(G) ≥

⌊
n
2

⌋
then λ(G) = δ(G) More-

over, this bound is best possible in the sense that there
exists a connected graph G′ of order n ≥ 6 with
δ(G′) =

⌊
n
2

⌋
− 1 and λ(G′) < δ(G′).

The next theorem generalizes Chartrand’s result.

Theorem 31 [16]: Let G be a connected graph of
order n. If δ(G) ≥

⌊
n
l+1

⌋
, 1 ≤ l ≤ n − 1, then

λ
(dnl c)
c (G) ≥ δ(G). Moreover, if n ≥ l(l + 1) this

is best possible in the sense that for all δ such that⌊
n
l+1

⌋
≤ δ ≤

⌊
n
l

⌋
− 1, there exists a connected graph

G′ of order n with δ(G′) = δ and λ(dnl c+1)
c (G) <

δ(G).

Observe that when l = 1, we obtain Theorem 30.
The previous theorem does not give the best pos-

sible result when n < l(l + 1). Our next theorem
shows that in fact in this case

⌈
n
l

⌉
is not best possi-

ble.

Theorem 32 Let G be any connected graph of order n
with minimum degree δ =

⌊
n
l+1

⌋
, where n < l(l+ 1)

and l > 1. Write n =
⌊

n
l+1

⌋
(l + 1) + r, where 0 ≤

r ≤ l and set m =

⌈
r

b n
l+1c

⌉
. Then λ(l+m+1)

c (G) ≥

δ(G) =
⌊

n
l+1

⌋
. Moreover, this is best possible in the

sense that there exists a connected graph G′ of order
n with δ(G′) =

⌊
n
l+1

⌋
and λ(l+m+2)

c (G′) < δ(G′).
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5 Algorithmic Considerations
We begin by observing that the problem of comput-
ing κ(k)c (G) for arbitrary k and arbitrary G is NP-hard
since κ(2)c (G) = n − β(G) where β(G) is the inde-
pendence number of G.

On the other hand, suppose a graph is equipped
with nonnegative weights on the vertices and 2 ≤
k ≤ wG, where wG denotes the sum of all weights
of G. Let κ(k)wc (G) denote the minimum order of a set
of vertices whose failure leaves a subgraph with each
component having weight at most k − 1. We present
a polynomial algorithm for computing κ

(k)
wc (T ) for

an arbitrary tree T . We also present an algorithm
for a weighted unicycle. Regarding the edge model,
we define λ(k)wc analogously for graphs with weighted
nodes, and present polynomial algorithms for comput-
ing λ(k)wc of an arbitrary tree and an arbitrary unicycle.
We also present an efficient algorithm for computing
κ
(n−α)
wc (G) for constant α and arbitrary G.

Definition 33 Suppose G is equipped with non-
negative weights on the vertices and let 2 ≤ k ≤ wG,
where wG denotes the sum of all weights of G. Then
κ
(k)
wc (G) is the minimum number of vertices whose re-

moval leaves a subgraph with each component having
weight at most k − 1.

Remark 34 If all nodes have weight equal to 1, then
κ
(k)
wc (G) = κ

(k)
c (G).

Algorithm 1 Algorithm for κ
(k)
wc (T ) for a

Weighted Tree T on n Nodes.

• Input: Tree T with weighting function w(u) ≥ 0
for u ∈ V (T ); Integer k such that

2 ≤ k ≤ w(T ) =
∑

u∈V (T )

w(u).

• Output: κ
(k)
wc (T ) and an associated minimum

failure set W .

• Initialization: Root T at any vertex r ∈ V (T )
and for each v ∈ V (T ) let l(v), the level of
v, denote the distance of v from r. Set L =
max{l(v)|v ∈ V (T )}, W = ∅, CompSize(u)=0
for each u ∈ V (T ), and T ′ = T.

• While L ≥ 0 do

1. For each u such that l(u) =
L, let CompSize(u) = w(u) +∑
vi a child of u in T ′

CompSize(vi).

2. For each u at level L if CompSize(u) ≥ k
add u to W and set T ′ = T ′−T (u) , where
T(u) is the subtree of T ′ rooted at u.

3. Set L = L− 1.

end while.

• Return: κ
(k)
wc (T ) = |W | and minimum failure

set W.

We defer proving correctness and refer the reader
to [17]. Instead, we provide an example

Example 35 Consider weighted tree T as
shown in Figure 3 with weights −→w =
(1, 3, 2, 1, 0, 3, 2, 1, 1, 1, 2, 3) where −→w i = w(ui) and
k = 4. In the parentheses we indicate the weight and
the level of the node.

Figure 3: Tree T

Initialization: L = 3, W = ∅, T ′ = T ,
CompSize(u) = 0 for all u ∈ V (T ).

L = 3:

1. CompSize(u1) = 1, CompSize(u2) = 3,
CompSize(u3) = 2, CompSize(u4) = 1.

2. Since CompSize(ui) < 4 for all u1 with l = 3,
T ′ remains the same.

3. Set L = 2.

L = 2:

1. CompSize(u5) = 0 + 1 = 1, CompSize(u6) =
3 + 3 + 2 = 8, CompSize(u7) = 2,
CompSize(u8) = 1 + 1 = 2.
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2. Since CompSize(u6) = 8 ≥ 4, set W = {u6}
and T ′ = T ′ − T (u6), see Figure 4.

3. Set L = 1.

Figure 4: T ′ at the next stage

L = 1:

1. CompSize(u9) = 1 + 1 = 2, CompSize(u10) =
1 + 2 + 2 = 5, CompSize(u11)=2.

2. Since CompSize(u10) = 5 ≥ 4, set W =
{u6, u10} and T ′ = T ′ − T (u10), see Figure 5.

3. Set L = 0.

Figure 5: T ′ at the next stage

L = 0:

1. CompSize(r = u12) = 3 + 2 + 2 = 7.

2. Since CompSize(u12) = 7 > 4, set W =
{u6, u10, u12} and T ′ = T ′(u12) (which results
in an empty tree).

3. Set L = −1.

The while loop is done: κ(4)wc (T ) = |W | = 3 and
W = {u6, u10, u12} is a minimum failure set.

We now consider κ
(k)
wc of a weighted unicy-

cle. We first observe that either κ
(k)
wc (Cn) =

0 when w(Cn) ≤ k − 1 or κ
(k)
wc (Cn) =

min
{

1 + κ
(k)
wc (Cn − u)|u ∈ V (Cn)

}
, so that n ap-

plications of the tree algorithm serves to determine
κ
(k)
wc (Cn). Next consider a weighted unicycle U

on n nodes with unique cycle Cm with vertices
u1, u2, . . . , um. The remaining vertices, if any, form
trees rooted at the vertices u1, u2, . . . , um. Label each
vertex with its distance from its associated root and
refer to theses labels as levels ( so that u1, u2, . . . , um
are all at level 0).

Algorithm 2 Algorithm for κ
(k)
wc (U) of a

Weighted Unicycle U on n Nodes.

• Input: Unicycle U on n nodes with unique cycle
Cm on the vertices {u1, u2, . . . , um} and weight-
ing function w(u) ≥ 0 for u ∈ V (U); Integer k

such that 2 ≤ k ≤ w(U) =

∑
u ∈ V (U)

w(u).

• Output: κ
(k)
wc (U) and an associated minimum

failure set W.

• Initialization: For each v ∈ V (U) let l(v)
denote the distance of v from Cm. Set L =
max{l(v)|v ∈ V (U), W = ∅, CompSize(u) =
0 for each u ∈ V (U), and U ′ = U.

• While L ≥ 1 do

1. For each u such that l(u) =
L, let Compsize(u) = w(u) +∑
vi a child of u ∈ U ′ CompSize(vi).

2. For each u at level L if CompSize(u) ≥ k,
add u to S and set U ′ = U ′ − T (u), where
T(u) is the subtree of U ′ rooted at u.

3. Set L = L− 1.

end while.

• For j = 1 to m, let CompSize(uj) = w(uj) +∑
vi a child of uj ∈ U ′

CompSize(vi).

• Let w ∈ V (Cm) have maximum CompSize.

• If CompSize(w) ≥ k , then
add w to W, apply the tree algorithm to
U ′ − T (w), rooted at a node from
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the cycle to obtain a minimum failure
set Ww of U ′ − T (w).
Set W = W ∪Ww.

else if w(Cm) ≥ k, then
for j = 1 to m, apply the tree algorithm to
W ′ − T (uj), rooted at a node of the cycle
and let Wj be the failure set returned.
Let j be such that |Wj | is minimum
and set W = W ∪ {uj} ∪Wj .

• Return: κ
(k)
wc (T ) = |W | and minimum failure

set W.

Again in lieu of providing a proof, which can be found
in [17], we present examples.

Example 36 Consider the weighted unicycle U
as shown in Figure 6 with weights −→w =
(3, 1, 2, 3, 1, 2, 0, 1, 1, 3, 2, 1) where −→w i = w(ui) and
k = 4. In the parentheses we indicate the weight
and the level (i.e. distance from the cycle C5 =
u1, u2, u3, u4, u5, u1) of the node.

Figure 6: Weighted unicycle U

Initialization: L = 2, W = ∅, CompSize(u) = 0
for all u ∈ V (U).
L = 2:

1. CompSize(u9) = 1 and CompSize(u12 = 1.

2. Since CompSize(ui) < 4 for all ui with l = 2,
U ′ remains the same.

3. Set L = 1.

L = 1:

1. CompSize(u6) = 2, CompSize(u7) = 0 + 1 = 1,
CompSize(u8) = 1 + 1 = 2, CompSize(u10) =
3, CompSize(u11) = 2.

2. Since CompSize(ui) < 4 for all ui with l = 1,
U ′ remains the same.

3. Set L = 0.

L = 0: The while loop is done.
CompSize(u1) = 3+2 = 5, CompSize(u2) = 1+2 =
3,CompSize(u3) = 2,CompSize(u4) = 3+3+2 = 8,
CompSize(u5) = 1 + 1 = 2.
Set w = u4.
Since CompSize(u4) = 8 > 4, set W = {u4},
Apply the tree algorithm to U ′ − w rooted at u1, see
Figure 7. Note the level is now distance from the
root u1.

Figure 7: The tree U ′ − w rooted at u1

The minimum failure set obtained by the tree
algorithm is Ww = {u1, u2}. Set W = W ∪
Ww = {u1, u2, u4}. Then κ(k)wc (U) = |W | and W =
{u1, u2, u4} is a minimum failure set.

Example 37 Consider weighted unicycle U
as shown in Figure 8 with weights −→w =
(3, 1, 2, 1, 0, 3, 2, 1, 1, 3, 2, 1) where −→w i = w(ui)
and k = 4. In the parentheses we indicate the
weight and the level (i.e. distance from the cycle
C3 = u1, u2, u3, u1) of the node.

Figure 8: Unicycle U

In this discussion we will summarize the steps in the
algorithm, rather than list them all. The first nodes
encountered with CompSize ≥ k occur when l = 1,
namely CompSize(u4) = 5 and CompSize(u6) = 8.
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Then set W = {u4, u6} and U ′ = (U ′ − T (u4)) −
T (u6), see Figure 9.

Figure 9: Unicycle

The while loop is done. CompSize(u1) = 3,
CompSize(u2) = 1 + 0 + 1 = 2, CompSize(u3) = 2.
Thus w(C3) = 7 ≥ 4. Applying the tree algorithm to
U ′−T (u1) rooted at u2 we obtainW1 = {u2}, apply-
ing the tree algorithm to U ′ − T (u2) rooted at u3 we
obtainW2 = {u3}, and applying the tree algorithm to
U ′−T (u3) rooted at u1 we obtain W3 = {u1}. Since
|Wi| = 1 for each i, we choose any of them, say W1,
and obtain W = W ∪ {u1} ∪W1 = {u1, u2, u4, u6}.
Therefore W = {u1, u2, u4, u6} is a minimum failure
set and κ(4)wc (U) = |W | = 4.

We now consider the case where edges fail.

Definition 38 Suppose G equipped with non-negative
weights on the edges and let 2 ≤ k ≤ wG, where wG
denotes the sum of all weights of G. Then λ(k)wc (G) is
the minimum number of edges whose removal leaves a
subgraph with each component having weight at most
k − 1.

Remark 39 If all nodes have weight equal to 1, then
λ
(k)
wc (G) = λ

(k)
c (G).

We now present efficient algorithms for comput-
ing λ(k)wc of an arbitrary tree and of an arbitrary unicy-
cle, using the presentation we gave in [18]. We shall
omit proofs of validity given in [18] but we shall in-
clude the examples given there.

Algorithm 3 Algorithm for λ(k)wc (T ) of a Weighted
Tree T on n Nodes.

• Input: Tree T with weighting function w(u) ≥ 0
for u ∈ V (T ); Integer k such that

2 ≤ k ≤ w(T ) =
∑

u∈V (T )

w(u).

• Output: λ
(k)
wc (T ) and an associated minimum

failure set Fa.

• Initialization: Root T at any vertex r ∈
V (T ) and for each v ∈ V (T ) set l(v) =∑

u∈V (T (v))w(u), where T (v) denotes the sub-
tree rooted at v. We refer to l(v) as the label of v.
Set Fa = ∅.

• While there exists v ∈ V such that l(v) ≥ k but
l(u) ≤ k − 1 for all descendants of v do

1. Let u1, u2, . . . , ud denote the children of v
ordered such that l(u1) ≥ l(u2) ≥ · · · ≥
(ud).

2. Determine the minimum i such that
l(v) −

∑i
j=1 l(uj) ≤ k − 1 and add

{{v, u1}.{v, u2}, . . . , {v, ui}} to Fa.
3. Relabel the nodes in the component of
T − Fa containing the root r, i.e.

l(v) := l(v)−
i∑

j=1

l(uj)

and then relabel all ancestors of v.

end while.

• Return: λ(k)wc (T ) = |Fa| and minimum edge fail-
ure set Fa.

Example 40 Consider the tree on n = 9 nodes with
weights on the nodes as shown. We assume that k = 5.

Next we provide the labels.
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Since l(v1) = 6 ≥ 5 and l(v5) = 3 add edge {v1, v5}
to Fa and set l(v1) = 3, l(r) = 16. We indicate the
resulting graph with edge {v1, v5} deleted.

Similarly l(v2), l(v3) ≥ 5, we add edges
{v2, v6} and {v3, v7} to Fa and relabel
l(v2) = 3, l(v3) = 2, l(r) = 10.

Finally l(r) = 10 ≥ 5, add edges {r, v1} and
{r, v2} to Fa and relabel l(r) = 4.

Since l(v) < 5 for all v ∈ V, the algorithm
is complete. Therefore λ

(5)
wc (T ) = |Fa|, where

Fa = {{v1, v5}, {v2, v6}, {v3, v6}, {r, v1}, {r, v2}}
is a minimum edge failure set.

As regards an algorithm for a unicycle U , real-
ize that if the total weight of the unique cycle Cm is
at least k, then a minimum edge set must contain an

edge from Cm so that λ(k)wc is just
min

x ∈ E(Cm)
(1 +

λ
(k)
wc (U − x)) and may be computed by m repetitions

of the tree algorithm. On the other hand, if the total
weight of the cycle Cm is at most k − 1, a minimum
edge failure set may or may not contain an edge of

Cm. If it doesn‘t then λ(k)wc can be computed by apply-
ing the tree algorithm to the weighted tree TC obtained
from U by coalescing Cm to a node and assigning it
a weight equal to the total weight of Cm. Hence we
have the following algorithm.

Algorithm 4 Algorithm for λ(k)wc of a Weighted
Unicycle U on n Nodes.

• Input: Unicycle U on n nodes with unique cycle
Cm on the vertices u1, u2, . . . , um and weighting
function w(u) ≥ 0 for u ∈ V (U); Integer k such

that 2 ≤ k ≤ w(U) =

∑
u ∈ V (U)

w(u).

• Output: λ
(k)
wc (U) and an associated minimum

failure set Fa.

• Initialization: Set w =

∑
u ∈ V (Cm)

w(u) and

Fa = ∅. Let TC be the weighted tree obtained
from U by coalescing Cm to a node uC and set-
ting w(uC) = w.

1. Using the λ
(k)
wc (T )-algorithm on each

U − x where x ∈ E(Cm) determine
min

x ∈ E(Cm)
(λ

(k)
wc (U − x)) and the edge

failure set F ′a for the minimum. If x is
the edge deleted from Cm to obtain F ′a, set
F ′′a = F ′a ∪ {x}.

2. If w ≥ k set Fa = F ′′a .

3. If w ≤ k − 1 determine λ(k)wc (TC) using
the λ(k)wc (T )-algorithm and the correspond-
ing minimum weighted failure set F ′′′a . If
|F ′′′a | ≤ |F ′′a | then set Fa = F ′′′a else set
Fa = F ′′a .

• Return: λ(k)wc (U) = |Fa| and minimum edge fail-
ure set Fa.

We present two examples of the algorithm.

Example 41 Consider the unicycle U shown below
and assign the weight 1 to each node.
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If k = 6 then
min

x ∈ E(C)
(λ

(6)
wc (U − x) + 1) = 2, but

TC as shown below has λ(6)wc = 1. So λ(6)wc (U) = 1 and
Fa = {x}.

Example 42 Consider the unicycle U as shown and
assign weight 1 to each node.

If k = 6 then
min

x ∈ E(C)
(λ

(6)
wc (U − x) + 1) = 3, but

TC as shown below has λ(6)wc = 5. So λ(6)wc (U) = 3 and
Fa = {x1, x2, x3}.

We conclude this section by describing an effi-
cient procedure to determine κ(n−α)c (G) for an arbi-
trary graph G having n nodes and e edges and con-
stant α. Recall by Theorem 10, if G is a graph on n
nodes and 2 ≤ k ≤ n, then

(i) κ(G) ≥ n− k+ 1 implies that κ(k)c = n− k+ 1
and

(ii) κ(G) ≤ n− k implies that κ ≤ κ(k)c ≤ n− k
Now applying this result to the case where k = n−α
we see that

(i′) κ(G) ≥ α+ 1 implies that κ(k)v = α+ 1 and
(ii′) κ(G) ≤ α implies that κ ≤ κ(k)c ≤ α

Because of these facts we determine κ(n−α)c (G)
in a brute force manner. Indeed, if κ(G) is at least α+

1 we may conclude that κ(n−α)c (G) = α + 1. On the
other hand if κ(G) is at most αwe proceed as follows:
For each subset S of α − 1 nodes we determine the
order of the components of G − S. If for all S there
exists a component ofG−S of order at least n−α we

declare κ(n−α)c (G) to be α. Otherwise, we consider
each subset S of order α−2. If for all S there exists a
component ofG−S of order at least n−α we declare
κ
(n−α)
c (G) to be α− 1. Continuing on in this fashion

it is clear that if γ is the largest integer, k − 1 ≤ γ ≤
α − 1 such that a subset of nodes S exists such that
|S| = γ and G − S has a component of order at least
n− α then κ(n−α)c (G) = γ + 1.

6 Neighbor Component Order Con-
nectivity

In this final section we introduce a new scenario cur-
rently being studied along with some preliminary re-
sults. Consider a network modeled by a (simple)
graph G = (V, E) having n = |V | nodes and e = |E|
edges. With this model, nodes fail and the nodes adja-
cent to failed nodes are subverted and therefore con-
sidered inoperable. All edges connected to failed and
subverted nodes are also subverted. We note that the
subversion of a node does not preclude it from fail-
ing. Thus the state of the associated system consists of
those nodes which are operating, i.e. those that have
neither failed nor are subverted. For convenience, we
will also refer to the subgraph ofG induced by the op-
erating nodes as a state of the system. Observe that if
W is the set of nodes that have failed, then this sub-
graph is precisely G−[W ], where G[W ] is the closed
neighborhood of W . Following the terminology of
Gunther and Hartnell [19] a state is a neighbor-failure
state if it is either empty or nonempty and discon-
nected. The minimum number of nodes whose fail-
ure along with the subversion of neighbors results in
either a neighbor-failure state or a complete subgraph
is called the neighbor-connectivity of the graph and is
denoted κnc(G) or simply κnc.

Gunther, Hartnell and Nowkowski proved the fol-
lowing result.

Theorem 43 [20]: For a graph G, κnc(G) ≤
κnc(G).

Now combining the notions of neighbor-
connectivity and component order connectivity,
the vulnerability parameter κ

(k)
nc (G) neighbor-

component-order connectivity is defined as follows.

Definition 44 [21]: Let G =(E, V ) be a graph hav-
ing n = |V | nodes and e = |E| edges and assume
2 ≤ k ≤ n . Nodes fail but edges do not, when a node
fails all adjacent nodes are subverted and are consid-
ered inoperable. A state is the set of operating nodes
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at a snapshot in time. A state is a neighbor operating
state if the operating nodes induce a subgraph with at
least one component of order at least k. Otherwise,
it is a neighbor failure state, i.e. all components of
the induced subgraph have order at most k − 1 and,
the associated set of failed nodes is called a neighbor
failure set. The k-neighbor component connectivity
or neighbor component order connectivity of G, de-
noted by κnc(G) or simply κnc, is the minimum cardi-
nality of a neighbor failure state.

Note that for convenience, we will also refer to
the subgraph induced by the operating nodes as a
state. If W is the set of nodes which have failed then
the state is precisely the subgraph G−[W ].

We give some examples for this new parameter.

Example 45 Assume 2 ≤ k ≤ n.
a) LetG = Pn, the path on n nodes. Starting from

an end node, number the nodes from 1 to k + 2. Then
repeat numbering until all of the nodes are labeled.
Next, delete the closed neighborhoods of nodes la-
beled k+1. (Note, this will also remove nodes labeled
k and k+2 as they are neighbors of node k+1). Con-
tinue to remove closed neighborhoods from the path in
this manner. The surviving subgraph consists of a dis-
connected graph with components of order k − 1 and
one remainder component of order≤ k. If the remain-
der component has order k, remove one more closed
neighborhood from that component. Given n and k, it
follows by the division algorithm, n =

⌊
n
k+2

⌋
(k+2)+r

where 0 ≤ r ≤ k + 1 and

κ(k)nc (Pn) =


⌊

n
k+2

⌋
+ 1, r = k, k + 1⌊

n
k+2

⌋
, 0 ≤ r ≤ k − 1

.

b) Let G = Cn , the cycle on n nodes. To find
a minimum neighbor-failure set, let u be an arbitrary
node. The deletion of u and the subversion of its two
neighbors leaves a surviving subgraph which is a path
of length n− 3. Applying the procedure in a) to Pn−3
and the division algorithm n =

⌊
n−3
k+2

⌋
(k+2)+r where

0 ≤ r ≤ k + 1 , we get

κ(k)nc (Cn) =


⌊
n−3
k+2

⌋
+ 2, r = k, k + 1⌊

n−3
k+2

⌋
+ 1, 0 ≤ r ≤ k − 1

.

c) Let G = K1,n−1, the complete bipartite graph
with one part of order 1. Removal of the center node
subverts all the other nodes, thus κ(k)nc (K1,n−1) = 1 .

d) Let G = Kn, the complete graph on n nodes.
The deletion of any node subverts all the other nodes,
thus κ(k)nc (Kn) = 1.

e) Let G = Kp,q , the complete bipartite graph
on p + q = n nodes with p ≤ q. The deletion of
any node from one part subverts all the nodes from
the other part and isolates the remaining nodes, thus
κ
(k)
nc (Kp,q) = 1 .

We now state some properties of κ(k)nc . If W is a
minimum cardinality failure set for κ(k)c , i.e. all com-
ponents of G − W have order at most k − 1, then
clearly W is a neighbor failure state as well. Thus we
have the following theorem.

Theorem 46 [21]: Let G be a graph on n nodes and
e edges, then κ(k)nc ≤ κ(k)c .

By Proposition 5 It is known that if H ⊂ G

then κ
(k)
c (H) ≤ κ

(k)
c (G). However, for neighbor-

connectivity and neighbor-component order connec-
tivity, this inequality is not necessarily true. We
demonstrate this in the following example.

Example 47 Consider the wheel on 9 nodes, denoted
W9 and its induced subgraph the cycle C8, see Figure
10. From Example 45 b) we know that κ(k)nc (C8) = 2

for 2 ≤ k ≤ 5. But κ(k)nc (W9) = 1 for all k since the
central node is a failure set.

Figure 10

Remark 48 κ
(k)
nc (H) may be larger than κ

(k)
nc (G)

even if H is a spanning subgraph of G.

Our next results focus on obtaining a realizability
result for trees. Recall by Proposition 2.48 (1), for any
tree T on n nodes κ(k)c (T ) ≤ κ

(k)
c (Pn). As the next

example shows, κ(k)nc of an arbitrary tree can be larger
than that of the path.
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Example 49 : Consider the tree T17 on 17 nodes
with indicated specific nodes as depicted in Figure
11(a) and P17 with indicated nodes as depicted in
Figure 11(b). Let k = 3. By inspection we see that
Wa = {v1, v2, v3, v4} and Wb = {u1, u2, u3} are
minimum neighbor-failure sets of T17 and P17, respec-
tively. Therefore

κ(3)nc (T17) = |Wb| = 3 < 4 = |Wa| = κ(3)nc (T17).

Figure 11

Thus if T is an arbitrary tree on n nodes κknc(T )
may not be less than κknc(Pn). Now by Theorem
43, κ(k)nc (T ) ≤ κc(k)(T ) and by Proposition 8 (1),
κc(k)(T ) ≤ κc(k)(Pn). We conclude this section
with the following result.

Theorem 50 [21]: Let T be a tree on n nodes. Then
for any value k, 2 ≤ k ≤ n,

1 = κ(k)c (K1,n−1) ≤ κ(k)c (T ) ≤ κ(k)c (Pn) =
⌊n
k

⌋
.

An algorithm to compute κ(k)nc for an arbitrary tree ex-
ists and will be found in the thesis of K. Luttrell which
is in preparation.
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